Kirchhoff's Laws


Kirchhoff's Laws
Kirchhoff's Current Law
At any instant the sum of all the currents flowing into any circuit node is equal to the sum of all the currents flowing out of that node:
SIin = SIout
Similarly, at any instant the algebraic sum of all the currents at any circuit node is zero:
SI = 0

So, for the node of picture here, For example
I1+I2+I3 = I4+I5
Kirchhoff's Voltage Law
At any instant the sum of all the voltage sources in any closed circuit is equal to the sum of all the voltage drops in that circuit:
SV= SIR
Similarly, at any instant the algebraic sum of all the voltages around any closed circuit is zero:
SV SIR = 0  
So, for the  picture here, For example


                                       Here, V0  = V1+V2+V3





Example: Given circuit below, find V2, V0, I2, R1, R2


I2 = 3/2  =  1.5A
According to Ohm's law, we have .
Apply KVL to the loop on the right to get:
                                    -V2+5-3 = 0,        V2 = 2v


                                              And
                                                         R2= V2/I2    = 2V/1.5A  = 1.33 ohm

According to Ohm's law, we have .
Apply KCL to the middle node on top to get:
2- I1 – I2  = 0,
2- I1 -1.5 =0
I1 = 0.5 A
And

                                                    R1 = 5V / 0.5A
                                                     R1 = 5V / 0.5A
                                                      R= 10 ohm




Again by Ohm's law, we get .
Apply KVL to the loop on the left to get:
-3×2 – 5+ V0  = 0,   V0 = 11v                                                                                   

                                                                                          

                                                                                    


Example:   Find all branch current of the circuit,
Solution:
 Apply KVL in Loop ABDA, we get
    5 – x – z + y = 0
Or, x – y + z = 5  ..............(i)
Apply KVL in Loop BCDB, we get
      z – x + 5 + y +z +z =0
or x – y – 3z = 5  ...............(ii)
Apply KVL in Loop ADCEA, we get
.     –y –y – z +10 – x – y = o
Or, x + 3y +z = 10 ..................(iii)
From equation (i) and (ii), we get
    2z = 0   or z = 0
From equation (i) and (iii), we get
  x-y = 5 ...........(iv)
and x+3y = 10 .....(v)
now from equation (iv) and (v), we get
-4y = -5   , or y = 1.25
So,   x = 5+1.25= 6.25
So,  Current of brunch AB = Current of brunch BC= 6.25 Amps
      Current of brunch AD = Current of brunch DC =1.25 Amps
     Current of brunch BD = 0
    Current of brunch CEA = 6.25 + 1.25 = 7.5 Amps
------------------------------------000-----------------------------------------


Example: Find VAB,  VBC,   VCA  from the circuit using Kirshoff`s law
Solution:
We get from Loop ABGEA,   -I1 R1 – 10 + 12 = 10,
                                          Or, I1R1 =  2V   or   VAB =  2V  (Ans)
Apply KVL in Loop BCFGB, we get
-I2R2 – 12 + 10 = 0
I2R2 = -2V   or VBC = -2V (Ans)
Apply KVL in Loop AEFCA, we get
                                              -12 + 12 – I3R3 = 0
                                    Or, I3R3 = 0V    or, VCA = OV (Ans)